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1 Why Small Pool PCR?
Small pool PCR is used to quantitate the frequency of microsatellite alleles. In
traditional large pool PCR, samples of thousands of alleles are ampli�ed and their
sizes measured. Because of the stutter bands near large peaks, it is di�cult to detect
a small frequency allele near a large peak and estimation of the frequency of the
rare allele is almost impossible. The top panel of Figure 1 illustrates the problem;
by viewing this panel only, it is not clear whether the peak at a size of 19 is real or
not and it is certainly not clear how to estimate the frequency of allele 19.

In small pool PCR, small amounts, typically two alleles, of DNA are ampli�ed.
The small number of alleles distinguishes peaks, as shown by the middle and bottom
panels of Figure 1. Many replicate examinations are performed to assure detection
of rare alleles, and the proportion of replicates in which a particular allele is seen
allows estimation of the frequency of the allele. This estimation is the subject of
the current work.
2 Terminology
We consider a single locus. Progenitor alleles are identi�ed by genotyping. Our
primary interest is in the estimation of the frequency of mutant alleles.

An examination of a sample consists of the ampli�cation of one or more amounts
of DNA; the results from each amount ampli�ed is termed a run. Replicate samples
of each ampli�cation are conducted, we term the replicate a well. The information
obtained from a well consists of the identity of the alleles seen in it, for example,
well 3 contained alleles 102 and 104.

A considerable reduction of the data is possible with no loss of information
relevent to the estimation of allele frequencies. Only the number of wells in which
an allele was seen in each run need be recorded; the combinations of alleles in wells
contributes no additional information about allele frequencies.
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The operational unit of the amount of ampli�ed DNA is the allele equivalent
(AE): one AE is that amount of DNA that, when ampli�ed, produces on average
one identi�able allele. Estimating the AE in one experimenter unit of initial DNA,
e.g., picograms, is an important part of the analysis. c, denotes this number.

Alleles are labelled arbitrarily, usually by either the number of short DNA se-
quence repeats or the number of base pairs in the allele. The subscript i will be
used to denote a particular allele.

To summarize, the information used in an analysis is:
� The experimental design: The number of runs, the amount of DNA ampli�ed,
and the number of wells in each run.

� The progenitor alleles.
� For each run, the number of wells in which each allele was seen.
Results of the analysis include:
� The calibration quantity, c { the AE in one experimenter DNA unit.
Frequently, the amount of DNA that the experimenter ampli�es at several loci
is determined by the results at a di�erent locus. Ampli�cation may di�er from
locus to locus, so it is important to calibrate each separately.

� The frequency of each allele in the sample. The frequency of allele i is denoted
fi.

� The total mutation frequency.
� The variablitity of the estimates. This is needed, for example, to compare the
mutation frequencies of two samples.
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3 Overview of Statistical Methods
The analysis of SPPCR data involves maximum likelihood estimation. Descriptions
of likelihood methods and the reasons for their use are found in standard texts on
statistical theory, for example, Chapter 18 of Stuart (1991). Here, we attempt to
emphasize the intuitive nature of the methods used.

The steps in the development of methods for analysing SPPCR data are:
1. Develop a statistical model. The model provides the probability of any

outcome given the values of the parameters of the model, c and the fi. The
probability of the outcome of an experiment considered as a function of these
parameters is termed the likelihood; the logarithm of this probability is the
log-likelihood.

2. Choose c and the fi to maximize the log-likelihood.
3. Compute variances of the estimates.

4 Statistical Model
The number of alleles in a particular well is distributed Poisson. We denote the
DNA amount in run r in experimenter units by Dr. The mean number of alleles
per well, AE, of this run is cDr.If there are N alleles in a well, the number of occurrences of each allele type is
distributed according to the multinomial distribution with the probability that an
allele is of type i being fi.The appendix shows that this distribution of number of alleles of a particular
type, i, is Poisson; the mean of this Poisson distribution is cDrfi. The probabilityof ni alleles of type i in a well is the same regardless of the number of alleles of a
di�erent type in the well { i.e., the distribution of di�erent alleles are independent.
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This result implies that knowledge of combination of alleles in a well provides
no addition information over the number of wells in which each allele is seen. The
probability of a combination is the product of the probabilities of the alleles in the
combination; the particular combinations arising are purely due to chance.

The result also implies that that the mean number of alleles of di�erent sizes can
be estimated separately, ignoring those of other sizes. One-at-a-time estimation is
a great computational simpli�cation over simultaneous estimation.
4.1 The Likelihood
Let �i = cfi. The mean number of alleles labelled i in a well in run r is Dr�i. Theprobability of not seeing allele i in a particular well in run r is the probability of no
events in a Poisson process with this mean,

pur = exp(�Dr�i); (1)
The probability of seeing allele i in a well is psr = 1� pur. (u and s are mnemonic
for `unseen' and `seen'.)

The probability of seening allele i in nsr wells and of not seeing it in nur wells ina run is given by the binomial formula:
Pir =

0B@ nsr + nurnsr
1CA pnsrsr pnurur : (2)

This is the likelihood for allele i in this run.
It is traditional to work with the logarithm of the likelihood instead of the

likelihood itself. Taking the logarithm frequently simpli�es the calculation and the
statistical theory tends to deal more naturally with the logarithmic values. The
only operation which we perform on the log-likelihood is to �nd the value of �i thatmaximizes it. Consequently, we can omit the logarithm of the binomial coe�cient
from the log-likelihood, since it depends only on the data obtained and not on �i.
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With this simpli�cation, we can write the likelihood of seeing the i'th allele size
in nsr wells and not seeing it in nur wells for run r as

llir = nsr log(psr) + nur log(pur) (3)
= nsr log(1� exp(�Dr�i))� nurDr�i (4)

where the last line �llows by replacing psr and pur from 1.
The total likelihood in i is the probability of Pir over all runs r. Logarithms add

over products so the total log-likelihood in i is
lli =X

r llir:
For any one run, r, the estimation of �ir is straightforward. The maximum

likelihood estimate of a binomial proportion of events is the observed proportion.
Hence, the natural (and maximum likelihood) estimate of �i is obtained by solving

p̂ur = nurnsr + nur = exp(�Dr�̂i)
This yields the following estimate, �̂ir:

�̂ir = � log(p̂ur)Dr (5)
This solution can be veri�ed by di�erentiating the log-likelihood and setting the
derivative to zero.

If there are several runs, the likelihood must be maximized numerically. A good
starting value for the maximization is the average over the runs of the �̂ir. We
denote The maximum likelihood estimate of �i over the (possibly several) runs by
�̂i.
5 A Problem
Suppose that there is only one run in an examination of a specimen and allele i was
seen in every well. Then according to equation (5), the estimate of �i is in�nite. A
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value of in�nity is absurd, because it implies that regardless of the dilution of the
sample ampli�ed, allele i will always be seen.

This problem persists even if the amount of DNA is small enough that there are
wells in which i is not seen. The expectation (mean) of the estimate is

E(�̂i) = NX
u=0 �̂i(u)b(u;N; pur)

where N is the number of wells in the run, u is the number of wells in which i is
not seen. b(u;N; pur) is the binomial probability of not seeing the allele labelled i
in precisely u of N wells when the probability of not seeing i in any one well is pur.Because �̂i(0) is in�nite and b(0; N; pur) > 0, the average is in�nite. This in turn
implies an in�nite bias for the estimate since �i is �nite. (The bias of an estimator is
its expected value minus the true value.) The variance of the estimate will similarly
be in�nite. This problem is not resolved by having more than one run.

Theory provides no solution to this problem; any solution used will be ad hoc.
Our solution: modify �̂i(0) by increasing nur from 0 to 1=2 and correspondingly
decrease nsr by 1=2. If there are several runs and nur is 0 in all of them, only the
value in the run with the largest amount of DNA ampli�ed is modi�ed.
6 Estimation of c. the fi, and the total mutant

frequency
The estimate of c is

ĉ =X
i �̂i (6)

since Pi fi = 1.
The estimate of fi is thus f̂i = �̂îc (7)

and the estimate of the fraction of mutants is:
m̂ = Pk �̂kPj �̂j
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The the last formula, the index j ranges over all alleles and k ranges over all except
the progenitor alleles.
7 Estimates of the Variances
There are two methods for computing the variance of the estimates:

1. Asymptotic approximations. These approximations arise from the theory.
Their accuracy improves with increases in the total number of wells. This
method has two disadvantages. (1) It requires a bit of mathematical sophis-
tication to derive the estimates. (2) The theory does not provide methods for
determining when the number of wells is su�ciently large for these approxi-
mations to be useful.

2. Simulation or bootstrap estimates. New random data is generated from
the original data and �t to obtain estimates of c and the fi. The process is
repeated a large number (e.g., 1000) times and the variance of the estimate is
obtained from these replicates.

If the two methods disagree, we prefer the simulation method because it does
not require a large number of wells for accuracy.

The simulation method does require more computation than does the asymptotic
method. However, with a modern computer the generation and analysis of 1000
random replicates of the experiment requires only a fraction of a second.

The generation of new random data sets proceeds as follows: For each run, we
know the number of wells and psr for allele i. The simulated value of nsr for allelei is a random number from a binomial distribution. The number of trials in the
binomial is the number of wells, and the probability of an event is psr.

8



8 Transformation of Data
One of the primary uses for SPPCR results is the comparison of mutation frequencies
between specimens (normal versus tumor) or populations (genetic abnormality or
not). The normal approximation to the binomial is frequently used to compare
proportions. As the number of wells gets larger and larger, this approximation gets
better and better. However, for any real experiment, the approximation can be
poor.

Figure 2 (left panel) shows the distribution of 1000 random replicate estimates
of a mutant frequency of 5%; the distribution is scaled from 0 to 1 to make it
comparable to the rightmost panel. The distribution is notably skewed to the right;
there are more values further from the mean on the right of the distribution than
on the left.

The right panel shows the distribution when the arcsin transform is applied to
each estimate. The arcsin transfromation of a proportion, m, is

t(m) = 2 arcsin(q(m))
and this transformation is frequently used to better approximate the normal distri-
bution. The skew is noticibly less in the right panel than in the left; by the usual
statistical measure of skewness, the left panel has a skewnes of 0.61, the rightmost
panel of -0.18. The skewness of a symmetric distribution would be zero, so the
transformation slightly over corrects in this case..
9 Example
Figure 1 shows some of the results of chromatograms of separation of the alleles
of the trinucleotide (CTG) repeat, a microsatellite at the myotonic dystrophy locus
(DMPK). The alleles were visualized by conducting PCR using primers that 
anked
the repeat. One of the primers was labeled with a 
uor enabling the detection of
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the ampli�ed fragments with an ABI gel separation apparatus. The human tissue
used was suspected of having some level of microsatellite instability. Twenty small
pool PCR wells at an investigator estimated 1 g.e. (2 a.e.) were run. Of these,
16 contained the 5 repeat fragment, 14 contained the 20 repeat fragment, and 3
contained the mutant 19 repeat fragment.

The allele of size 5 was not seen in 4 of 20 wells, or a proportion of 0.2. From 5,
we have

�̂5 = � log(0:2)2 = 0:8047 (8)
The estimates of the other mu's are:

�̂19 = 0:0812 (9)
�̂20 = 0:6019 (10)

(11)
From 6,

ĉ = 0:8047 + 0:0812 + 0:6019 = 1:4878
and �nally from 7

f̂5 = 0:8047=1:4878 = 0:5409 (12)
f̂19 = 0:0812=1:4878 = 0:0545 (13)
f̂20 = 0:6019=1:4878 = 0:4045 (14)

(15)
The 95% con�dence limits on the mutant frequency (f19) are (0:0078; 0:1397).

The mutant frequency is not determined with precision with only 20 wells.
10 Statistical Testing
This section discusses the most common statistical tests associated with SPPCR.
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10.1 Comparing Mutant Frequencies Between Two Speci-
mens

The two specimens on which mutant frequencies are compared might be normal and
tumor tissue in the same individual; the usual comparison would be that of total
mutants, however, the frequency of any particular mutant could be compared across
the samples.

Let the estimates of the mean of the transformed frequencies of interest in the
two specimens be F1 and F2 and let the corresponding estimated variances be V1and be V2. Then, since t(F1) and t(F2) are approximately normal an appropriate
statistic for assessing the signi�cance of the di�erence between the two frequencies
is:

Z = t(F1)� t(F2)q(V1 + V2)If the two frequencies are the same, then Z should be distributed as a unit
normal, so a di�erence in absolute value of at least 1.96 is signi�cant at the 0.5%
level for a two-sided test.
10.2 Comparing Two Mutant Frequencies in a Single Spec-

imen
The obvious method would be to use the normal approximation for the frequencies,
fi, taking as mean and standard deviation the mean and standard error of the
estimates and the bootstrap standard error. This is incorrect since the f 's are
correlated due to their common dependence on the estimate of c.

The correct proceedure is to compare the �i using a normal approximation. The
�'s are uncorrelated.

11



10.3 Comparing Mutant Frequencies Between Two Cate-
gories of Specimens

Categories are groups of samples identi�able by some criterion; for example, samples
from individuals with cancer and others without cancer or those with some genetic
abnormality and those without the same abnormality.

Our transformation, t, that makes the data more nearly normal in one sample,
is of no help here because the transformed mean of individual frequencies is not
necessarily near the mean of the transformed frequencies.

If we believed that the true frequency of mutation were the same in each in-
dividual in each category and that deviations were due to chance alone, then a Z
statistic could be developed in analogy with the above one. This reasoning does
not account for the individual to individual variation in frequency which is likely
to be much greater than the chance variation of the experiment. Consequently, we
recommend standard procedures for the comparison of two groups on the raw (not
transformed) estimates of the mutant frequencies. In particular, we would run the
t-test and the signed-rank tests and examine the data carefully if these two methods
disagreed appreciably.
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Appendix A: Demonstration that Alleles in a Well
are Distributed as Independent Poisson Variates
An amount D of DNA is ampli�ed in a well. The number of alleles in the well
is distributed Poisson with mean cD, where c is the calibration constant. The
probability of n alleles in a well is

(cD)nn! e�cD (16)
Suppose that there are three alleles labelled 1,2, and 3. The frequencies of the

alleles are f1; f2; f3, where the f 's are positive and add to one. . Let n1; n2; n3 bethre non-negative integers adding to n. Then given that there are n alleles in a
well, the probability of n1 of size 1, n2 of size 2, and n3 of size 3 is given by the
multinomial distribution, n!n1!n2!n3!fn11 fn22 fn33 (17)

We wish to show that the product of the two probabilities (16) and (17) is the
same as the probability of (n1; n2; n3) events from independent Poisson distributions
with means (cDf1; cDf2; cDf3). The latter probability is

(cDf1)n1n1! e�(cDf1) (cDf2)n2n2! e�(cDf2) (cDf3)n3n3! e�(cDf3) (18)
The factorial terms are obviously the same in the two expressions as are the

powers of fi. Because f1 + f2 + f3 = 1, it follows that
e�(cDf1) + e�(cDf2) + e�(cDf3) = e�(cD)(f1+f2+f3) = e�cD

�nishing the demonstration.
The proof is the same for more than three alleles.
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Appendix B: Asymptotic Variances
The asymptotic variance of m̂ui is, from likelihood theory,

Var(�i) = �(@2ll@�i
2)�1 :

This, according to (4) and (1) is
Var(�i) =X

r
 p2srnsrDr2pu

! :
Since the �i are independent, their variances add, so

Var(c) =X
i V ar�i:

To compute the variances of the fi, we use the delta method also called the
propogation of error For a description of this method see section 10.5 of Stuart
and Ord, Vol. I (1993). Under certain conditions that are met in the cases to be
discussed, the variance of a function, f , of two random variables is asymptotically
approximated by:

Var(f(X; Y )) � ( @f@X )2Var(X) + ( @f@Y )2Var(Y ) + @2f@X@Y Cov(X; Y )
We need only the case in which

f(X; Y ) = XX + Y
and X and Y are independent so that Cov(X; Y ) = 0. The method yields the
approximation,

Var� XX + Y
� � Y 2Var(X) +X2Var(Y )(X + Y )4

In calculating fi, X is �i and Y is Pj �j over j 6= i.
In calculating the total proportion of mutants, X isPj �j where j ranges over thelabels of the mutants; Y is Pp �k where k ranges over the label(s) of the progenitor

allele(s).
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Fig. 1. The top panel shows a typical result from a chromatogram of a well containing
at least 100 genome equivalents of DNA. The two "progenitor" fragments of this 5
repeat/20 repeat heterozygote are clearly visible with the attending smaller "satellite"
bands leading single repeat units ahead. Assessing whether the satellite bands are
real or only noise is di�cult from an examination of this panel. The bottom two
panels are two of 20 small pools in which the DNA had been diluted to contain only
a single g.e. The middle panel contains only the expected 5 repeat and 20 repeat
fragments. The bottom panel is one in which a 19 repeat fragment is clearly visible.
The 19 repeat fragment is never unequivocably visualized in the "large" pool PCR
reactions because it is present in low frequency and is consequently lost in the stutter
band.
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Fig. 2. Distribution of estimates of the mutation frequency in 1000 random replicates
(left panel). Distribution after applying the arcsin transformation (right panel).
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